30 resultados para Endothelial nitric oxide synthase

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scope Diets low in fruits and vegetables (FV) are responsible for 2.7 million deaths from cardiovascular diseases (CVD) and certain cancers annually. Many FV and their juices contain flavonoids, some of which increase endothelial nitric oxide synthase (eNOS) activity. A single nucleotide polymorphism in the eNOS gene, where thymine (T) replaces guanine (G) at position 894 predicting substitution of glutamate for aspartate at codon 298 (Glu298Asp), has been associated with increased CVD risk due to effects on nitric oxide synthesis and subsequently vascular reactivity. Individuals can be homozygous for guanine (GG), thymine (TT) or heterozygous (GT). Methods and results We investigated the effects of acute ingestion of a FV-puree-based-drink (FVPD) on vasodilation and antioxidant status in subjects retrospectively genotyped for this polymorphism. Healthy volunteers (n = 24; 11 GG, 11 GT, 2 TT) aged 30–70 were recruited to a randomized, controlled, crossover, acute study. We showed that acute consumption of 400 mL FVPD differentially affected individuals depending on their genotype. There was a significant genotype interaction for endothelium-dependent vasodilation measured by laser Doppler imaging with iontophoresis (P < 0.05) and ex vivo low-density lipoproteins (LDL) oxidation (P = 0.002). GG subjects had increased endothelium-dependent vasodilation 180 min (P = 0.028) and reduced ex vivo LDL oxidation (P = 0.013) after 60 min after FVPD compared with control, no differences were observed in GT subjects. Conclusion eNOS Glu298Asp genotype differentially affects vasodilation and ex vivo LDL oxidation after consumption of FV in the form of a puree-based drink.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide regulates many important cellular processes including motility and invasion. Many of its effects are mediated through the modification of specific cysteine residues in target proteins, a process called S-nitrosylation. Here we show that S-nitrosylation of proteins occurs at the leading edge of migrating trophoblasts and can be attributed to the specific enrichment of inducible nitric oxide synthase (iNOS/NOS2) in this region. Localisation of iNOS to the leading edge is co-incidental with a site of extensive actin polymerisation and is only observed in actively migrating cells. In contrast endothelial nitric oxide synthase (eNOS/NOS3) shows distribution that is distinct and non-colocalised with iNOS, suggesting that the protein S-nitrosylation observed at the leading edge is caused only by iNOS and not eNOS. We have identified MMP-9 as a potential target for S-nitrosylation in these cells and demonstrate that it co-localises with iNOS at the leading edge of migrating cells. We further demonstrate that iNOS plays an important role in promoting trophoblast invasion, which is an essential process in the establishment of a successful pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Endothelial nitric oxide synthase (eNOS) activity in endothelial cells is regulated by post-translational phosphorylation of critical serine, threonine and tyrosine residues in response to a variety of stimuli. However, the post-translational regulation of eNOS in platelets is poorly defined. Objectives: We investigated the role of tyrosine phosphorylation in the regulation of platelet eNOS activity. Methods: Tyrosine phosphorylation of eNOS and interaction with the tyrosine phosphatase SHP-1 were investigated by coimmunoprecipitation and immunoblotting. An in vitro immunoassay was used to determine eNOS activity together with the contribution of protein tyrosine phosphorylation. Results: We found platelet eNOS was tyrosine phosphorylated under basal conditions. Thrombin induced a dose- and time-dependent increase in eNOS activity without altering overall level of tyrosine phosphorylation, although we did observe evidence of minor tyrosine dephosphorylation. In vitro tyrosine dephosphorylation of platelet eNOS using a recombinant protein tyrosine phosphatase enhanced thrombin-induced activity compared to thrombin alone, but had no effect on endothelial eNOS activity either at basal or after stimulation with bradykinin. Having shown that dephosphorylation could modulate platelet eNOS activity we examined the role of potential protein phosphatases important for platelet eNOS activity. We found SHP-1 protein tyrosine phosphatase, co-associated with platelet eNOS in resting platelets, but does not associate with eNOS in endothelial cells. Stimulation of platelets with thrombin increased SHP-1 association with eNOS, while inhibition of SHP-1 abolished the ability of thrombin to induce elevated eNOS activity. Conclusions: Our data suggest a novel role for tyrosine dephosphorylation in platelet eNOS activation, which may be mediated by SHP-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substituted amphetamines such as p-chloroamphetamine and the abused drug methylenedioxymethamphetamine cause selective destruction of serotonin axons in rats, by unknown mechanisms. Since some serotonin neurones also express neuronal nitric oxide synthase, which has been implicated in neurotoxicity, the present study was undertaken to determine whether nitric oxide synthase expressing serotonin neurones are selectively vulnerable to methylenedioxymethamphetamine or p-chloroamphetamine. Using double-labeling immunocytochemistry and double in situ hybridization for nitric oxide synthase and the serotonin transporter, it was confirmed that about two thirds of serotonergic cell bodies in the dorsal raphe nucleus expressed nitric oxide synthase, however few if any serotonin transporter immunoreactive axons in striatum expressed nitric oxide synthase at detectable levels. Methylenedioxymethamphetamine (30 mg/kg) or p-chloroamphetamine (2 x 10 mg/kg) was administered to Sprague-Dawley rats, and 7 days after drug administration there were modest decreases in the levels of serotonin transporter protein in frontal cortex, and striatum using Western blotting, even though axonal loss could be clearly seen by immunostaining. p-Chloroamphetamine or methylenedioxymethamphetamine administration did not alter the level of nitric oxide synthase in striatum or frontal cortex, determined by Western blotting. Analysis of serotonin neuronal cell bodies 7 days after p-chloroamphetamine treatment, revealed a net down-regulation of serotonin transporter mRNA levels, and a profound change in expression of nitric oxide synthase, with 33% of serotonin transporter mRNA positive cells containing nitric oxide synthase mRNA, compared with 65% in control animals. Altogether these results support the hypothesis that serotonin neurones which express nitric oxide synthase are most vulnerable to substituted amphetamine toxicity, supporting the concept that the selective vulnerability of serotonin neurones has a molecular basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Peroxynitrite (ONOO-) is formed in the inflamed and degenerating human joint. Peroxynitrite-modified collagen-II (PMC-II) was recently discovered in the serum of patients with osteoarthritis (OA) and rheumatoid arthritis (RA). Therefore we investigated the cellular effects of PMC-II on human mesenchymal progenitor cells (MPCs) as a model of cartilage and cartilage repair cells in the inflamed and degenerating joint. Design: MPCs were isolated from the trabecular bone of patients undergoing reconstructive surgery and were differentiated into a chondrogenic lineage. Cells were exposed to PMC-II and levels of the proinflammatory mediators nitric oxide (NO) and prostaglandin E-2 (PGE(2)) measured. Levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated mitogen activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kappa B) activation were measured by enzyme linked immunosorbent assay (ELISA) together with specific MAPK and NF-kappa B inhibitors. Results: PMC-II induced NO and PGE(2) synthesis through upregulation of iNOS and COX-2 proteins. PMC-II also lead to the phosphorylation of MAPKs, extracellularly regulated kinase 1/2 (ERK1/2) and p38 [but not c-Jun NH2-terminal kinase (JNK1/2)] and the activation of proinflammatory transcription factor NF-kappa B. Inhibitors of p38, ERK1/2 and NF-kappa B prevented PMC-II induced NO and PGE(2) synthesis, NOS and COX-2 protein expression and NF-kappa B activation. Conclusion: iNOS, COX-2, NF-KB and MAPK are known to be activated in the joints of patients with OA and RA. PMC-II induced iNOS and COX-2 synthesis through p38, ERK1/2 and NF-KB dependent pathways suggesting a previously unidentified pathway for the synthesis of the proinflammatory mediators, NO and PGE(2), further suggesting that inhibitors of these pathways may be therapeutic in the inflamed and degenerating human joint. (c) 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptor proteins play an important role in signaling pathways by providing a platform on which many other proteins can interact. Malfunction or mislocalization of these proteins may play a role in the development of disease. Lipoma preferred partner (LPP) is a nucleocytoplasmic shuttling adaptor protein. Previous work shows that LPP plays a role in the function of smooth muscle cells and in atherosclerosis. In this study we wanted to determine whether LPP has a role in the myocardium. LPP expression increased by 56% in hearts from pressure overload aortic-banded rats (p < 0.05 n = 4), but not after myocardial infarction, suggesting hemodynamic load regulates its expression. In vitro, LPP expression was 87% higher in cardiac fibroblasts than myocytes (p < 0.05 n = 3). LPP expression was downregulated in the absence of the actin cytoskeleton but not when microtubules were disassembled. We mechanically stretched cardiac fibroblasts using the Flexcell 4000 for 48 h (1 Hz, 5% maximum strain), which decreased total LPP total expression and membrane localization in subcellular fractions (p < 0.05, n = 5). However, L-NAME, an inhibitor of nitric oxide synthase (NOS), significantly upregulated LPP expression. These findings suggest that LPP is regulated by a complex interplay between NO and mechanical cues and may play a role in heart failure induced by increased hemodynamic load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signalling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors which convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain, 1Hz for 48 hours to mimic in vivo mechanical stress. Cells were also treated with and without L-NAME, a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres which was rescued by LNAME (P<0.05, n≥5 cultures). We hypothesized that the mechanism was through NOinduced alteration of myocyte gene expression. L-NAME up-regulated the mechanosensing proteins Muscle LIM protein (MLP (by 100%, p<0.05, n=4 cultures)) and lipoma preferred partner, a novel cardiac protein (LPP (by 80%, p<0.05, n=4 cultures)). L-NAME also significantly altered the subcellular localisation of LPP and MLP in a manner that favoured growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between iNOS and nNOS isoforms regulate gene expression. LPP knockdown by siRNA led to formation of α-actinin aggregates and Z-bodies showing that myofibrillogenesis was impaired. There was an up-regulation of E3 ubiquitin ligase (MUL1) by 75% (P<0.05, n=5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure. Keywords: Mechanotransduction, heart failure, stretch, heart, hypertrophy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The hypocholesterolemic effects of soy foods are well established, and it has been suggested that isoflavones are responsible for this effect. However, beneficial effects of isolated isoflavones on lipid biomarkers of cardiovascular disease risk have not yet been shown. Objective: The objective was to investigate the effects of isolated soy isoflavones on metabolic biomarkers of cardiovascular disease risk, including plasma total, HDL, and LDL cholesterol; triacylglycerols; lipoprotein(a); the percentage of small dense LDL; glucose; nonesterified fatty acids; insulin; and the homeostasis model assessment of insulin resistance. Differences with respect to single nucleotide polymorphisms in selected genes [ie, estrogen receptor a (Xbal and PvuII), estrogen receptor beta (AluI), and estrogen receptor beta(cx) (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), cholesteryl ester transfer protein (TaqIB), and leptin receptor (Gln223Arg)] and with respect to equol production were investigated. Design: Healthy postmenopausal women (n = 117) participated in a randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2: 1; 50 mg/d) or placebo cereal bars were consumed for 8 wk, with a wash-out period of 8 wk before the crossover. Results: Isoflavones did not have a significant beneficial effect on plasma concentrations of lipids, glucose, or insulin. A significant difference between the responses of HDL cholesterol to isoflavones and to placebo was found with estrogen receptor 0(cx) Tsp5091 genotype AA, but not GG or GA. Conclusions: Isoflavone supplementation, when provided in the form and dose used in this study, had no effect on lipid or other metabolic biomarkers of cardiovascular disease risk in postmenopausal women but may increase HDL cholesterol in an estrogen receptor P gene-polymorphic subgroup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dietary isoflavones are thought to be cardioprotective because of their structural similarity to estrogen. The reduction of concentrations of circulating inflammatory markers by estrogen may be one of the mechanisms by which premenopausal women are protected against cardiovascular disease. Objective: Our aim was to investigate the effects of isolated soy isoflavones on inflammatory biomarkers [von Willebrand factor, intracellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), E-selectin, monocyte chemoattractant protein 1, C-reactive protein (CRP), and endothelin 1 concentrations]. Differences with respect to single-nucleotide polymorphisms in selected genes [estrogen receptor alpha (XbaI and PvuII), estrogen receptor beta [ER beta (AluI) and ER beta[cx] (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), and cholesteryl ester transfer protein (TaqIB)] and equol production were investigated. Design: One hundred seventeen healthy European postmenopausal women participated in this randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2:1;50 mg/d) or placebo cereal bars were consumed for 8 wk, with a washout period of 8 wk between the crossover. Plasma inflammatory factors were measured at 0 and 8 wk of each study arm. Results: Isoflavones improved CRP concentrations [odds ratio (95% Cl) for CRP values >1 mg/L for isoflavone compared with placebo: 0.43 (0.27, 0.69)]; no significant effects of isoflavone treatment on other plasma inflammatory markers were observed. No significant differences in the response to isoflavones were observed according to subgroups of equol production. Differences in the VCAM-1 response to isoflavones and to placebo were found with ER beta AluI genotypes. Conclusion: Isoflavones have beneficial effects on CRP concentrations, but not on other inflammatory biomarkers of cardiovascular disease risk in postmenopausal women, and may improve VCAM-1 in an ER beta gene polymorphic subgroup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective was to determine whether the endothelial nitric oxide synthase (eNOS) Glu298Asp polymorphism influences vascular response to raised NEFA enriched with saturated fatty acids (SFA) or long-chain (LC) n-3 polyunsaturated fatty acids (PUFA). Subjects were prospectively recruited for genotype (Glu298, n = 30 and Asp298, n = 29; balanced for age and gender) consumed SFA on two occasions, with and without the substitution of 0.07 g fat/kg body weight with LC n-3 PUFA, and with heparin infusion to elevate NEFA. Endothelial function was measured before and after NEFA elevation (240 min), with blood samples taken every 30 min. Flow-mediated dilation (FMD) decreased following SFA alone and increased following SFA+LC n-3 PUFA. There were 2-fold differences in the change in FMD response to the different fat loads between the Asp298 and Glu298 genotypes (P = 0.002) and between genders (P < 0.02). Sodium nitroprusside-induced reactivity, measured by laser Doppler imaging with iontophoresis, was significantly greater with SFA+LC n-3 PUFA in all female subjects (P < 0.001) but not in males. Elevated NEFA influences both endothelial-dependent and endothelial-independent vasodilation during the postprandial phase. Effects of fat composition appear to be genotype and gender dependent, with the greatest difference in vasodilatory response to the two fat loads seen in the Asp298 females.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The endothelial nitric-oxide synthase (NOS3) gene encodes the enzyme (eNOS) that synthesizes the molecule nitric oxide, which facilitates endothelium-dependent vasodilation in response to physical activity. Thus, energy expenditure may modify the association between the genetic variation at NOS3 and blood pressure. METHODS: To test this hypothesis, we genotyped 11 NOS3 polymorphisms, capturing all common variations, in 726 men and women from the Medical Research Council (MRC) Ely Study (age (mean +/- s.d.): 55 +/- 10 years, body mass index: 26.4 +/- 4.1 kg/m(2)). Habitual/non-resting energy expenditure (NREE) was assessed via individually calibrated heart rate monitoring over 4 days. RESULTS: The intronic variant, IVS25+15 [G-->A], was significantly associated with blood pressure; GG homozygotes had significantly lower levels of diastolic blood pressure (DBP) (-2.8 mm Hg; P = 0.016) and systolic blood pressure (SBP) (-1.9 mm Hg; P = 0.018) than A-allele carriers. The interaction between NREE and IVS25+15 was also significant for both DBP (P = 0.006) and SBP (P = 0.026), in such a way that the effect of the GG-genotype on blood pressure was stronger in individuals with higher NREE (DBP: -4.9 mm Hg, P = 0.02. SBP: -3.8 mm Hg, P= 0.03 for the third tertile). Similar results were observed when the outcome was dichotomously defined as hypertension. CONCLUSIONS: In summary, the NOS3 IVS25+15 is directly associated with blood pressure and hypertension in white Europeans. However, the associations are most evident in the individuals with the highest NREE. These results need further replication and have to be ideally tested in a trial before being informative for targeted disease prevention. Eventually, the selection of individuals for lifestyle intervention programs could be guided by knowledge of genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dairy intake, despite its high saturated fatty acid (SFA) content, is associated with a lower risk of cardiovascular disease and diabetes. This in vitro study determined the effect of individual fatty acids (FA) found in dairy, and FA mixtures representative of a high SFA and a low SFA dairy lipid on markers of endothelial function in healthy and type II diabetic aortic endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non- standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemical method after reduction of its oxidation products in cell culture supernatants. Activation of the RAW 264.7 murine monocyte/macrophage cell line increased the ratio of nuclear to cytoplasmic immunostaining for NF-kB. The increase was exacerbated by pre-treatment with genistein or daidzein. To show that decreases could also be detected, pre-treatment with the pine bark extract Pycnogenol (R) r was examined, and found to reduce translocation. NO production was also increased by activation, but was reduced by pre-treatment with genistein or daidzein. In the EA. hy926 human endothelial cell line, constitutive production was detectable and was increased by thrombin. The confocal and electrochemical methods gave data that agreed with results obtained using the established electromobility shift and Griess assays, but were more sensitive, more convenient, gave more detailed information and avoided the use of radioisotopes.